Enter a problem...
Linear Algebra Examples
2x-y=92x−y=9 , 6x-3y=96x−3y=9
Step 1
Find the AX=BAX=B from the system of equations.
[2-16-3]⋅[xy]=[99][2−16−3]⋅[xy]=[99]
Step 2
The inverse of a 2×22×2 matrix can be found using the formula 1|A|[d-b-ca]1|A|[d−b−ca] where |A||A| is the determinant of AA.
If A=[abcd]A=[abcd] then A-1=1|A|[d-b-ca]A−1=1|A|[d−b−ca]
Find the determinant of [2-16-3][2−16−3].
These are both valid notations for the determinant of a matrix.
determinant[2-16-3]=|2-16-3|determinant[2−16−3]=∣∣∣2−16−3∣∣∣
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
(2)(-3)-6⋅-1(2)(−3)−6⋅−1
Simplify the determinant.
Simplify each term.
Multiply 22 by -3−3.
-6-6⋅-1−6−6⋅−1
Multiply -6−6 by -1−1.
-6+6−6+6
-6+6−6+6
Add -6−6 and 66.
00
00
00
Substitute the known values into the formula for the inverse of a matrix.
10[-3-(-1)-(6)2]10[−3−(−1)−(6)2]
Simplify each element in the matrix.
Rearrange -(-1)−(−1).
10[-31-(6)2]10[−31−(6)2]
Rearrange -(6)−(6).
10[-31-62]
10[-31-62]
Multiply 10 by each element of the matrix.
[10⋅-310⋅110⋅-610⋅2]
Rearrange 10⋅-3.
[Undefined10⋅110⋅-610⋅2]
Since the matrix is undefined, it cannot be solved.
Undefined
Undefined