Linear Algebra Examples

Solve Using an Inverse Matrix 2x-y=9 , 6x-3y=9
2x-y=92xy=9 , 6x-3y=96x3y=9
Step 1
Find the AX=BAX=B from the system of equations.
[2-16-3][xy]=[99][2163][xy]=[99]
Step 2
Find the inverse of the coefficient matrix.
Tap for more steps...
The inverse of a 2×22×2 matrix can be found using the formula 1|A|[d-b-ca]1|A|[dbca] where |A||A| is the determinant of AA.
If A=[abcd]A=[abcd] then A-1=1|A|[d-b-ca]A1=1|A|[dbca]
Find the determinant of [2-16-3][2163].
Tap for more steps...
These are both valid notations for the determinant of a matrix.
determinant[2-16-3]=|2-16-3|determinant[2163]=2163
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
(2)(-3)-6-1(2)(3)61
Simplify the determinant.
Tap for more steps...
Simplify each term.
Tap for more steps...
Multiply 22 by -33.
-6-6-1661
Multiply -66 by -11.
-6+66+6
-6+66+6
Add -66 and 66.
00
00
00
Substitute the known values into the formula for the inverse of a matrix.
10[-3-(-1)-(6)2]10[3(1)(6)2]
Simplify each element in the matrix.
Tap for more steps...
Rearrange -(-1)(1).
10[-31-(6)2]10[31(6)2]
Rearrange -(6)(6).
10[-31-62]
10[-31-62]
Multiply 10 by each element of the matrix.
[10-310110-6102]
Rearrange 10-3.
[Undefined10110-6102]
Since the matrix is undefined, it cannot be solved.
Undefined
Undefined
 [x2  12  π  xdx ]